Why Whole Genome Sequencing Methods Differ

Justin Zook and Marc Salit
National Institute of Standards and
Technology
June 6, 2012

"Genome in a Bottle"

 Help enable translation of NGS to regulated clinical applications

 Select and maintain *Reference Materials*

From a single,
 internationally recognized source

Stable

Homogeneous

Well-characterized – towards "perfect" human genomes

E. Green et al. Nature (2011) 470: 204

Vision for NIST Genomic RMs

NIST Genomic Reference Materials

- Reference Material vs. Reference Genome or Reference Assembly
- Understanding uncertainty from bias is essential for Standard Reference Material characterization
- Comparison of SNPs in multiple datasets on a prospective Reference Material (NA12878)
- Integrating datasets to form consensus calls
- Utility of Reference Materials for understanding performance and bias

Whole genome sequencing technologies disagree about 100,000's of SNPs

Different bioinformatics algorithms also disagree about 100,000's of SNPs

Identifying characteristics of calls

Allele Balance: 1 0.83 0.5 ...

T Strand bias

Some false positives have distinctive characteristics

10 datasets used for NA12878 genome

Using characteristics of reliable calls to arbitrate between discordant calls

Consensus Genotype Calling

Step	Homozygous Reference	Heterozygous Homozygous Variant		Uncertain	
All possible SNP locations	-	-	-	9,367,080	
Highly confident set	4,235,734	1,891,778	1,116,083	2,123,485	
After 1 st arbitration	293,367	107,163	40,769	1,669,184	
After allele balance arbitration	806,344	0	211,471	651,369	
After voting	199,983	3,705	30,579	428,659	
Total	5,535,428	2,002,646	1,398,902	428,659	

Performance Metrics: Algorithm Comparison

Integrated Consensus Genotypes

<u>s</u> .		Homozygous Reference	Heterozygous	Homozygous Variant	Uncertain
00	Homozygous		FI	Vs	
nt	Reference/	5.44M	69.2k (1.81%)	47.2k (1.23%)	228k (5.95%)
Sar	No Call	FPs			
	Heterozygous	90.3k (2.36%)	1.93M (50.4%)	2199 (0.06%)	157k (4.10%)
HiSeq	Homozygous Variant	9990 (0.26%)	3714 (0.10%)	1.35M (35.2%)	42.0k (1.10%)

Integrated Consensus Genotypes

_		Homozygous Reference	Heterozygous	Homozygous Variant	Uncertain
	Homozygous Reference/	5.53M	FN 181k (4.73%)	ls 153k (3.99%)	329k (8.58%)
٠ ۲	No Call Heterozygous	FPs 6094 (0.18%)	1.82M (47.5%)	317 (0.01%)	85.9k (2.24%)
<u> </u>	Homozygous Variant	1934 (0.05%)	401 (0.01%)	1.25M (32.5%)	13.8k (0.36%)

HiSea – GATK

SNP arrays overestimate performance

OMNI SNP Array

_		Homozygous Reference	Heterozygous	Homozygous Variant	Uncertain
X	Homozygous		FI	Vs	
GA	Reference/	1.45M	7.24k (1.34%)	5.28k (0.65%)	N/A
Ū	No Call	FPs			
ed	Heterozygous	196 (0.03%)	411k (60.7%)	133 (0.02%)	N/A
HiSe	Homozygous Variant	154 (0.02%)	150 (0.02%)	249k (37.0%)	N/A

Integrated Consensus Genotypes

	Homozygous Reference	Heterozygous	Homozygous Variant	Uncertain
Homozygous Reference/	5.53M	FN 181k (4.73%)	ls 153k (3.99%)	329k (8.58%)
No Call	FPs 6094 (0.18%)	1.82M (47.5%)	317 (0.01%)	85.9k (2.24%)
Heterozygous Homozygous Variant	1934 (0.05%)	401 (0.01%)	1.25M (32.5%)	13.8k (0.36%)

HiSeq – GATK

Performance Metrics: Characteristics of Mis-calls

Performance Metrics: Characteristics of Mis-calls

Recalibrating base quality scores with Reference Materials

Ref	Α	С	С	Т	G	G	Α	Т	С
Read1	Α	С	С	G	G	G	Α	Т	С
Cycle	1	2	3	4	5	6	7	8	9
Quality	30	30	25	10	30	20	20	30	30
Dinuc	NA	AC	CC	CG	GG	GG	GA	AT	TC
Read2	Т	G	G	Α	С	С	Т	С	G
Cycle	9	8	7	6	5	4	3	2	1
Quality	30	30	25	30	30	20	30	30	30
Dinuc	GT	GG	AG	CA	CC	TC	СТ	GC	NG

Reported Quality Score (RQS): Base Quality from instrument

Empirical Quality Score: Error rate for bases with a particular Reported Quality Score and Cycle or Dinucleotide context

Recalibrated Quality Score: Reported Quality Score modified based on empirical quality score

Genome recalibration generally lowers qualities too much (esp. at CpG sites)

Blue: Genome recalibration lowers quality scores too much Yellow-orange: Genome recalibration raises quality scores too much

Zook et al., Synthetic spike-in standards improve run-specific systematic error analysis for DNA and RNA sequencing, *PLoS One*, submitted.

Utility of Reference Materials (RMs)

- RMs to assess sequencing performance are important for many applications (research, clinical, forensic, etc.)
- Whole genome RMs
 - Characterized by multiple technologies
 - Can identify ways to improve technologies and algorithms
 - Provide constant benchmarks for rapidly changing technologies and algorithms
 - Also looking into bacterial genome RMs
- Synthetic DNA RMs
 - Can be spiked-in to any sample
 - Can test detectability of specific types of variants
 - Can be used to improve GATK Base Quality Score Recalibration
 - Zook JM, et al., Synthetic Spike-in Standards Improve Run-Specific Systematic Error Analysis for DNA and RNA Sequencing PLoS ONE, submitted.

"Genome in a Bottle" Consortium

- Public-private-academic consortium
- Select, characterize, and discuss applications of RMs for human whole genome sequencing
- Open meeting at Stanford University in August 2012
- Whole genome RM characterization
 - Perform sequencing with multiple platforms with replicates and family members of prospective RM(s)
 - Develop methods to integrate data from multiple sequencing platforms and bioinformatic algorithms
 - Confirm subset of variants with orthogonal technologies

Acknowledgments

- Marc Salit
- Dan Samarov
- Archon Genomics Xprize
 - Brad Chapman
- Genome in a Bottle Consortium

jzook@nist.gov

NGS has many sources of error and bias

Source of uncertainty	Solutions			
Statistical sampling differences	More sequencing			
PCR amplification bias	PCR-free techniques			
Random sequencing errors	More sequencing, accurate quality scores, single cell sequencing			
Systematic sequencing errors	Multiple platforms, base quality score recalibration, strand bias information, orthogonal validation			
Global mapping errors (duplications)	Paired reads, longer reads, accurate mapping qualities, read coverage info, aCGH, optical mapping, fosmids, decoy reference sequence			
Local alignment errors (repeats, complex variants)	de novo assembly, longer reads, lower sequencing error rates			

Other types of variants are more difficult than SNPs

- Indels (scale 1-10s of bases)
- Large insertions and deletions (>10s of bases)
- Copy number variants (CNVs)
- Inversions
- Complex structural rearrangements
- Many difficult SNPs are near or inside other variants